Stochastic Schrodinger equations
نویسنده
چکیده
A derivation of stochastic Schrödinger equations is given using quantum filtering theory. We study an open system in contact with its environment, the electromagnetic field. Continuous observation of the field yields information on the system: it is possible to keep track in real time of the best estimate of the system’s quantum state given the observations made. This estimate satisfies a stochastic Schrödinger equation, which can be derived from the quantum stochastic differential equation for the interaction picture evolution of system and field together. Throughout the paper we focus on the basic example of resonance fluorescence.
منابع مشابه
Non-Markovian stochastic Schrödinger equations in different temperature regimes: a study of the spin-boson model.
Stochastic Schrodinger equations are used to describe the dynamics of a quantum open system in contact with a large environment, as an alternative to the commonly used master equations. We present a study of the two main types of non-Markovian stochastic Schrodinger equations, linear and nonlinear ones. We compare them both analytically and numerically, the latter for the case of a spin-boson m...
متن کاملNon-Markovian stochastic Schrodinger equations: Generalization to real- valued noise using quantum measurement theory
متن کامل
Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملInterpretation of non-Markovian stochastic Schrodinger equations as a hidden variable theory
متن کامل
Nonlinear dirac and diffusion equations in 1+1 dimensions from stochastic considerations
We generalize the method of obtaining fundamental linear partial differential equations such as the diffusion and Schrodinger equation, the Dirac, and the telegrapher's equation from a simple stochastic consideration to arrive at a certain nonlinear form of these equations. A group classification through a one-parameter group of transformations for two of these equations is also carried out.
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کامل